Which is the Best Position to Immobilize the Shoulder After a Dislocation?

Immobilization is commonly performed after acute first time shoulder dislocations.  The goal of immobilization is to protect the shoulder and allow healing in an attempt to minimize recurrent instability down the road, which isn’t uncommon.

Unfortunately, once you dislocate your shoulder, you have a decent chance of it happening again.


Traditionally, immobilization has occurred with the shoulder in a sling by the person’s side.  This puts the shoulder in adduction and internal rotation.  Considering that most anterior dislocations occur with the arm in an abducted and externally rotated position, this seemed to make sense to take stress of the tissue.

However, a study was published in 2001 by Itoi in the Journal of Bone and Joint Surgery discussing a new position of immobilization in shoulder external rotation.  

The authors used MRI to examine the capsule in both the position of shoulder internal rotation and external rotation.  They showed that the anterior capsule tissue was better approximated in the externally rotated position.  Other recent studies have agreed with these results.

which is the best position to immobilize the shoulder after a dislocation

This was an interesting finding and lead to a follow up study by the same group that was published in 2003 in the Journal of Shoulder and Elbow Surgery.  In this study, the authors prospectively assessed the recurrent instability rate in people that were immobilized in either internal or external rotation.

The results showed that there was a 30% recurrent instability rate in those immobilized in the traditional internally rotated sling position, compared to 0% in those immobilized in external rotation.

 

Which Position is Best to Immobilize the Shoulder After a Dislocation?

Based on these two studies, many began immobilizing the shoulder after dislocation in this position of external rotation.  There are now many shoulder immobilization braces on the market that position the shoulder in ER.

shoulder immobilization in external rotation

Since these two studies many have tried to replicate the original results of Itoi with mixed results.  

I must admit that any time a novel technique, clinical test, or approach is introduced in the literature and the original author has a 100% success rate, I proceed a little cautiously until others have replicated their research.

Clinically, there appears to be no difference in recurrence rates when comparing immobilizing the shoulder in either internal or external rotation.  This has been shown in several studies.

A recent meta-analysis was published in the American Journal of Sports Medicine that reviewed 6 randomized control trials and found no significant difference in recurrence rate.  This was consistent with a prior systematic review of the Cochran Database, which agreed.

 

Basic Science Vs. Clinical Studies

This is an interesting situation, where basic science studies appear to show that immobilization in external rotation may be theoretically more beneficial after shoulder dislocations, but clinical studies have not shown any benefit or reduced occurrence of recurrent instability.  It appears anatomically that immobilizing in a position of external rotation would put the labral tissue in the best position to heal.

I personally see this as a challenging study as many people are simply not compliant with immobilization after dislocations, especially once the acute trauma tends to settle down.  One particular study reported a compliance rate between 53-72%.  

That’s not great.

As of now, it seems like we need more research to make a more definitive decision.  However, keep in mind that these studies have not shown immobilization in internal rotation to be MORE beneficial, they just showed no difference between the two.  So as of now, if I dislocated my shoulder tomorrow, I would probably immobilize myself in external rotation based on the anatomical studies that show better tissue approximation.

For those out there, what are you seeing clinically in your area?  I would imagine this varies a lot based on your location and physicians you work with each day.  Are docs still immobilizing people in external rotation?  Have you found outcomes to differ from those immobilized in internal rotation?  Comment below and let me know.

 

How Rehab Differs Between Traumatic and Atraumatic Shoulder InstabilityHow Treatment Differs Between Atraumatic and Traumatic Shoulder Instability

If you are interested in learning more on this topic, I have an Inner Circle presentation on How Treatment Differs Between Atraumatic and Traumatic Shoulder Instability.  We discuss this topic, plus a lot more, in much greater detail.

How Rehab Differs Between Traumatic and Atraumatic Shoulder Instability

The latest Inner Circle webinar recording on How Rehab Differs Between Traumatic and Atraumatic Shoulder Instability is now available.

 

How Rehab Differs Between Traumatic and Atraumatic Shoulder Instability

How Rehab Differs Between Traumatic and Atraumatic Shoulder InstabilityThis month’s Inner Circle webinar is on How Rehab Differs Between Traumatic and Atraumatic Shoulder Instability.  In this presentation, I highlight the major differences in the evaluation and treatment process.

This webinar will cover:

  • The difference between traumatic and atraumatic shoulder instability
  • The import factors to consider that will change your rehab progression
  • Should you immobilize or not?
  • The primary focus for rehab for each type of instability

To access this webinar:

 

How to Stabilize the Scapula During Shoulder Elevation

One of the most common compensations we see with people with limited overhead shoulder elevation is lateral winging of the scapula.  Anytime you have limited glenohumeral joint mobility, your scapulothoracic joint is going to try to pick up the slack to raise your arm overhead.

This is common in postoperative patients, but also anyone with limited shoulder elevation.

Stabilizing the scapula during range of motion is often recommended to focus your mobility more on the shoulder than the scapula.  As with everything else, as simple as this seems, there is right way, a wrong way, and a better way to stabilize the scapula during shoulder elevation.

In this video, I demonstrate the correct way to stabilize the scapula, and show some common errors that I often see.

 

How to Stabilize the Scapula During Shoulder Elevation

 

Learn Exactly How I Evaluate and Treat the Shoulder

Interested in learning more?  Join my acclaimed online program teaching you exactly how I evaluate and treat the shoulder.  It’s a comprehensive 8-week online line program that covers everything you need to know about clinical examination, dynamic stability drills, manual therapy techniques, rotator cuff injuries, labral tears, stiff shoulders, and more.
large-learn-more

Is GIRD Really the Reason Why Baseball Pitchers Get Hurt?

Today’s guest post comes from Lenny Macrina, my good friend and co-owner of Champion PT and Performance.  We work with a lot of baseball players at Champion, which makes us really understand one thing – baseball pitchers are unique!  Many of our athletes come to us after going elsewhere for care but not making the progress they want.  I don’t think we are special, we just see a lot of baseball injuries, so we know what to look for in these athletes.  

Lenny does a great job here discussing a very common misconception about pitching injuries and GIRD.  Honestly, GIRD is kind of outdated.  

Lenny has conducted a ton of research on this topic and wanted to share his results.  You MUST understand the science and not get caught up in all the hype on the internet!  Read below and learn more!


 

Baseball pitchers tend to have unique amounts of mobility of their shoulders. Because of this, throwing generates tremendous forces on the shoulder.  This is important to consider when evaluating and treating baseball injuries.

All of this fancy talk basically says that throwing a baseball is technically bad for your body, and many times we see baseball pitchers with hurt shoulders and elbows.

But why?

We believe there are many reasons, but as physical therapists who have to assess and treat these baseball players, we must be aware of their unique presentation and act accordingly.

It has been well established in the literature that pitchers exhibit adaptations to their shoulder mobility from the act of throwing.   Generally, the thrower’s shoulder exhibits less internal rotation but greater external rotation compared to non-throwing side. There are many proposed reasons for these shoulder mobility changes, including bony adaptations, muscular tightness, shoulder blade position, and capsular restrictions.

This loss of internal rotation has received a lot of attention and has even been referred to as glenohumeral joint internal rotation deficit (GIRD).

 

Is GIRD really the reason why baseball pitchers get hurt?

Several authors have stated that GIRD may increase the risk of shoulder injuries in baseball pitchers. This has caused everyone to assume this and treat accordingly.

Our initial research, that we published in 2011, showed pitchers with GIRD had a 1.8 times increased risk of shoulder injury. But it was NOT statistically significant. Since then, we have published more data that shows similar trends, specifically in our paper looking at 8 consecutive seasons of injury data.

While pitchers with measured GIRD had a slightly higher rate of shoulder injury during that season, the relationship was not statistically significant and GIRD did not correlate with shoulder injuries.

Essentially, we have not shown that GIRD correlates to pitching injuries.

 

Total Motion May Be More of the Issue

Perhaps the issue really isn’t GIRD?  A more important measurement to consider in the overhead thrower is total rotational range of motion. Total rotation is defined as the sum of external rotation and internal rotation.

 

Total Rotational Range of Motion

Rather than look at internal rotation by itself, it may be more valuable to look at the combined total rotational motion of both external and internal rotation together.

In fact, we showed that pitchers with greater than a 5 degree deficit in total rotational range of motion displayed a greater risk of injury. In one study, this was a statistically significant 2.6 times increased risk of shoulder injury.

 

What About External Rotation and Shoulder Injuries?

Does GIRD Cause Baseball Pitching InjuriesCuriously enough, we also have shown a relationship between loss of external rotation mobility and shoulder injuries.  Pitchers with external rotation insufficiency were more likely to undergo surgery, 2.2 times more likely be placed on the DL for a shoulder injury, and 4.0 times more likely to undergo shoulder surgery.

Wow!  At first you would think, let’s stretch these guys out and gain external rotation. But hold on one second and let’s get a grip!

If you remember our study from 2011, we showed a high preponderance for shoulder injuries especially in the pitchers whose total motion was greater than 187 degrees.  You don’t want too little or too much motion!

So, as I always tell my students, athletes and fellow clinicians: We’re always walking a fine line between too much and not enough mobility.

 

What About Shoulder Flexion?

While internal and external rotation get all the exposure, shoulder flexion may actually be an area we see tight the most.

I think one interesting finding of our recent research has been the relationship between the shoulder flexion deficit and injury.  Pitchers with a deficit of greater than or equal to 5° in shoulder flexion of the throwing shoulder had a 2.8 times greater risk for elbow injury.

The correlation between shoulder flexion deficit and elbow injury may represent a lack of tissue mobility and overall flexibility (possibly to the latissimus dorsi) in injury-prone subjects.

The baseball pitcher has a unique mobility of the arm.  We need to be careful assuming that these abnormalities and asymmetries correlate to injury.  They often do not.

The challenge is figuring this out and keeping up with the research…as it is always evolving!  The more you work with baseball pitchers the more you appreciate these subtleties.  These are the subtleties that make them unique, and effective as athletes.

 

So, what does all of this mean?

  • Assess motion
  • GIRD not necessarily bad (actually pretty normal)
  • Lacking ER may increase risk of injury
  • Total range of motion deficits increase risk of injury
  • Shoulder flexion deficits increased elbow injury risks
  • Assess and never assume!

GIRD is not as evil as everyone makes it out to be.  Treating them unnecessarily and trying to gain internal rotation may actually make them worse.  Don’t treat without thoroughly assessing, and don’t assume GIRD is the reason why baseball pitchers get injured.

 

 

Assessing the Shoulder Shrug Sign

The latest Inner Circle webinar recording on Assessing the Shoulder Shrug Sign is now available.

Assessing the Shoulder Shrug Sign

Assessing_the_Shoulder_Shrug_SignIn this inservice recording, I overview the two main types of shoulder shrug signs that I see.  The classic shrug sign typically involves either a rotator cuff injury or significant capsular hypomobility.  However, we also see shrugs in people that have poor overhead mobility.

This webinar will cover:

  • What are the different types of shoulder shrug signs?
  • How to tell if you have a mobility or motor control issue
  • The sequence I follow to determine what to choose for my treatments

To access this webinar:

Assessing for Lat and Teres Tightness with Overhead Shoulder Mobility

Limitations in overhead shoulder mobility are common and often a frequent source of nagging shoulder pain and decreased performance.  Any loss of shoulder elevation mobility can be an issue with both fitness enthusiasts and athletes.  Just look at all the exercises that require a good amount of shoulder mobility in the fitness, Crossfit, and sports performance worlds.  Overhead press, thrusters, overhead squats, and snatches are some of the most obvious, put even exercises like pullups, handstands, wall balls, and hanging knee and toe ups can be problematic, especially when combined with speed and force such as during a kipping pull up.

Assessing for Lat and Teres Tightness with Overhead Shoulder MobilityWhen assessing for limitations in overhead shoulder elevation, there are several things you need to evaluate.  I’ve discussed many of these in several past blog posts and Inner Circle webinars on How to Assess Overhead Shoulder Mobility.

I am worried about what I am seeing on the internet right now.

I feel like the mobility trends I am seeing are focused on torquing the shoulder joint to try to improve overhead mobility.  Remember, the shoulder is a VERY mobile joint that tends to run into trouble from a lack of stability.  Trying to stretch out the joint or shoulder capsule should never be the first thing you attempt with self mobilization techniques.  In fact, I have found it causes way more problems than it solves.

Think about it for a second…

If your shoulder can’t fully elevate, jamming it into more elevation is only going to cause more issues. Find the cause. [Click to Tweet]

In my experience, the focus should be on the soft tissue around the joint, not the shoulder joint itself.  The muscles tend to be more of the mobility issue from my experience than the joint.  Just think about all the chronic adaptations that occur from out postures and habits throughout the date.

Two of the most muscles that I see causing limitations in overhead shoulder mobility at the latissimus dorsi and the teres major.

Here’s a quick and easy way to assess the lat and teres during arm elevation.

 

Assessing and Improving Overhead Shoulder Mobility

For those interested in learning more, I have a few Inner Circle webinars on how to assess and improve overhead shoulder mobility:

 

 

How to Assess Overhead Shoulder Mobility

The latest Inner Circle webinar recording on How to Assess Overhead Shoulder Mobility is now available.

How to Assess Overhead Shoulder Mobility

How to assess overhead shoulder mobilityThis month’s Inner Circle webinar is a live demonstration of How to Assess Overhead Shoulder Mobility .  In this recording of a live student inservice from Champion, I overview my process for assessing loss of overhead mobility.  This is a very common occurrence at Champion and something we do all day.  Many people don’t even realize they have a mild loss of mobility.

In this webinar, I’ll cover:

  • Why you must look at the shoulder, scapula, thoracic spine, and lumbar spine
  • What to look for during active elevation
  • How to assess for passive loss of motion
  • A couple of easy tweaks to assess if loss of mobility is coming from the joint or soft tissue
  • How to teach someone self assessments so they can monitor themselves

To access this webinar:

 

 

 

How to Assess the Scapula

The latest Inner Circle webinar recording on How to Assess the Scapula is now available.

How to Assess the Scapula

How to assess scapular dyskinesisThis month’s Inner Circle webinar is a live demonstration of How to Assess the Scapula.  In this recording of a live student inservice from Champion, I overview everything you should (and shouldn’t) be looking for when assessing the scapula.  When someone has a big nerve injury with significant winging or scapular dyskinesis, the assessment of the scapula is pretty easy.  But how do you detect the subtle alterations in posture, position, and dynamic movement?  By being able to identify a few subtle findings, you can really enhance how you write a rehab or training program.

In this webinar, I’ll cover:

  • What to look for in regard to static posture and scapular position
  • How to check to see if static postural asymmetries really have an impact on dynamic scapular movement
  • What really is normal scapulothoracic rhythm (if there really is a such thing as normal!)?
  • How to reliably assess for scapular dyskinesis
  • How winging during the concentric and eccentric phases of movement changes my thought process
  • How to see if scapular position or movement is increasing shoulder pain
  • How to see if scapular position or movement is decreasing shoulder strength

To access this webinar:

 

 

 

Pin It on Pinterest

Optin webinar graphic

5 Things You Need to Understand to Master Functional Rehab and Performance

Join Mike's Newsletter and gain FREE access to his webinar overviewing his system of integrated functional rehab and performance training, PLUS these bonuses:

1. My 1+ Hour Functional Rehab and Performance Webinar

2. My 36-Page Solving the Patellofemoral Mystery eBook

3. My Accelerated ACL Rehabilitation Protocol

Thanks! Check your email for more information and your FREE bonuses!