Hip Variations and Why My Squat Isn’t Your Squat

Today’s article is an AMAZING guest post from my friend Dean Somerset.  I’ve been talking a lot lately about how hip anatomy should change your mechanics and why exercises like squats should be individualized based on each person, but Dean blows this topic out of the water with this article.  If you love this stuff as much as I, check out the link at the bottom for Dean and Tony Gentilcore’s new program, The Complete Shoulder & Hip Blueprint.  This is just the tip of the iceberg of what is covered in the program.

 

Hip Variations and Why My Squat Isn’t Your Squat

In a recent workshop, I had a group of 50 fit and active fitness professionals and asked them all to do their best bodyweight squat with a position that felt good, didn’t produce pain, and was as deep as they could manage. As you can imagine, looking around the room produced 50 different squats. Some were wide, narrow, deep, high, turned out feet or some variation all of the above.

Did these differences mean there was a standard everyone should aim for, and those who weren’t there had to try to improve their mobility or strength or balance in that position? Maybe, but there’s probably a bunch of other reasons as to why 50 people have 50 different squats.

A standard requirement for powerlifting is to squat to a depth that involves having the crease of the hips below the vertical position of the knee. That’s probably the only known requirement for squat depth out there. The universal recommendation of “ass to grass” depth being the best thing since sliced bread may sound nice on paper (or in Instagram videos or Youtube segments), but it might be something that’s relatively difficult for some people to achieve, and for others it could be downright impossible, regardless of how much mobility work or soft tissue attacks they go through. The benefits of a deep squat seem to only be reserved for those who have the ability to express those benefits by accessing that range of motion without some other compensatory issue.

Let’s just consider simple stuff like anthropometric differences between individuals. Someone who is taller will have a bigger range of motion to go through to hit a parallel position than someone who is shorter, and someone with longer femurs in relation to their torso length will have a harder time maintaining balance over their base of support compared to someone who has shorter femurs. A long femur could be any femur that comprises more than 26% of an individual’s’ total height. So someone who is tall and long femured will have trouble getting down to or below parallel due to simply having the limb lengths to allow the bar to stay over the base of support during the squat motion without losing balance one way or the other.

Not as commonly known is the degree of retroversion or anteversion the femoral necks can make. The shaft of the femur doesn’t just always go straight up and insert into the pelvis with a solid 90 degree alignment. On occasion the neck can be angled forward (femoral head is anterior to the shaft) in a position known as anteversion, or angled backward (femoral head is posterior to the shaft) in a position known as retroversion. Zalawadia et al (2010) showed the variances in femoral neck angles could be as much as 24 degrees between samples, which can be a huge difference when it comes to the ability to move a joint through a range of motion.

hip variations squat

The acetabulum could itself be in a position of anteversion or retroversion, and this difference itself could be more than 30 degrees. This means the same shaped acetabulum would give someone who has the most anteverted acetabulum 30 extra degrees of flexion than someone who had the most retroverted acetabulum, but would give them 30 degrees more extension than the anteverted hips.

There’s also the differences in centre-edge angles, or the angle made from the center of the femoral head through the vertical axis and the outer edge of the lateral acetabulum. Laborie et al (2012) measured this angle in 2038 19 year old Norwegians, and found that it ranged from 20.8 degrees to 45.0 degrees with a mean of 32 in males and 31 in females.

hip anatomy squat

Now to throw even another monkey wrench into the problem, there’s the simple fact that your left and right hips can be at different angles from each other! Zalawadia (same guy as before) showed that the angle of anteversion or retroversion of the femur could be significantly different from left to right, sometimes more than 20 degrees worth of difference.

squat anatomy

All of this can have a direct effect on their available range of motion. You can’t easily mobilize bone into bone and create a new range from that interaction, so if one person has hips where the bony alignment and shape doesn’t causes earlier contact in a specific direction compared to someone else who has a different shaped and aligned hip structure, it’s going to show in their overall mobility.

Elson and Aspinal (2008) showed that there can be a massive variation in both passive and active movements of the hip across age ranges and gender differences. They showed a true hip flexion range of between 80-140 degrees (mean of 25)with no lumbar rounding, a strict active straight leg raise with no lumbar rounding range of 30-90 degrees (mean of 70), and active leg raise with lumbar rounding of 50-90 degrees (mean of 86). This means someone in their sample managed to get 60 degrees more hip flexion than someone else in the sample. There was also a range of between 5-40 degrees of hip extension too, and across an age range from 19-89 years old, that’s a notable difference, especially if you work in general populations where everyone walks into the gym and over to the squat rack.

D’Lima et al (2000) found that hip flexion ROM could be as low as 75 degrees with 0 degrees of both acetabular anteversion or femoral anteversion, but as high as 155 degrees, with 30 degrees of both acetabular anteversion or femoral anteversion. An increase in femoral neck diameter of as little as 2mm was able to reduce hip flexion range by 1.5 – 8.5 degrees, depending on the direction of motion.

So essentially, your ability to achieve a specific range of motion is as much up to your unique articular geometry as it is to your strength and mobility. In many cases, it’s entirely independent of your strength and mobility, and no amount of stretching, mashing, crushing, or stripping will improve it. In many cases, trying to achieve that range of motion that’s outside of your joints ability to achieve will cause less desirable results, like bone to bone contact and irritation (potentially leading to things like femoroacetabular impingement), or compensatory movement from other joints like the SI joint or lumbar spine.

So with as much involved with the structure as I’ve presented here, and how impactful it can be to the end result of total motion of the hips during exercises, how can you determine whether it’s a limiting factor or not? If you happen to have X-ray vision you can do a good job of this, but you’d likely be charging a heck of a lot more money than you are right now for your services.

What we have available is a detailed assessment that focuses on a combination of features.

Involving a passive assessment to assume a theoretically available range of motion and shape of movement capability, an active assessment to see how they can use that range and whether there’s a difference between the two, and then determining strength or motor pattern aptitudes for the movements can be the best tools we have at our disposal, and then coaching the movement until their face sweats blood.

By using multiple approaches to assessing available and usable range of motion, you can get multiple views into a room that can paint a broader picture of what’s available. If the person has the ability to easily let their knee drop to their chest on your treatment table and squat to the floor, there’s obviously no restriction to their range of motion. If they have trouble breaking 90 degrees, even if they move wider through abduction and external rotation, their active range is limited through multiple tests, and their ability to show you a squat shows a lumbar flexion at around 90 degrees of hip flexion as well, the odds of you mobilizing that tissue to produce a significantly bigger range may be limited.

 

Passive Assessment of Hip Structure

 

Active Hip Flexion Capability Against Gravity

 

Active Rockback for Hip Flexion without Gravity Influence

 

Supported Squat Assessment


If all of these tests show a specific limitation to the range of motion consistently across all situations, it could be assumed that there would be a structural limitation versus passive insufficiency, weakness or other considerations. If active testing is limited but passive or supported assessments are fine, there could be a strength or motor pattern limitation holding the movement back.

Now sure, there’s a lot of brakes that could be restricting that range, from things like scar tissue to guarding and some soft tissue restrictions. Doing some work to help reduce that can help improve overall range of motion, but in some cases will be limited to just minimal gains. In some situations, trainers or therapists may work on improving range of motion for weeks or months and see no improvement, and in many cases the deck would be stacked against them seeing any improvement at all.

customized squat pattern

As mentioned earlier, there could also be an asymmetric structural element at play, which may necessitate an asymmetric setup for the movement where one foot is either turned out more, held slightly forward or back, or even turned into something like a one-heel elevated squat. The difference between this and a lunge is merely how far back that elevated foot is relative to the other foot, but again it’s taking advantage of potential asymmetries in structure and allowing an asymmetric set up to be more congruent with the individual.

Another way to think of it is if we have a potentially asymmetric structure yet force a symmetric set up on it, we may be creating an imbalance or compensative element in our training versus preventing it.

The Complete Hip and Shoulder Blueprint

complere shoulder and hip blueprintThese and many more elements are discussed in Complete Shoulder & Hip Blueprint, a new continuing education resource from Tony Gentilcore and Dean Somerset. This digital video product is 11 hours of lecture and hands on where they break down pertinent anatomy, considerations for program design, and delve into assessments, corrective options, and training considerations for these 2 highly involved complex structures.

The series is currently on a launch sale pricing, and the entire package is available for only $137 versus the regular pricing of $177. The sale is on from November 1 through 5, so act quickly to get your copy.  Click below to learn more or check out the below preview video!

large-learn-more

 

large-learn-more

Shoulder Impingement – 3 Keys to Assessment and Treatment

Shoulder impingement really is a pretty broad term that most of us likely take for granted.  It has become such a junk term, such as “patellofemoral pain,” especially with physicians.  It seems as if any pain originated from around the shoulder could be labeled as “shoulder impingement” for some reason, as if that diagnosis is helpful to determine the treatment process.

Unfortunately, There is no magical “shoulder impingement protocol” that you can pull out of your notebook and apply to a specific person. [Click to Tweet]

I wish it were the simple.

A thorough examination is still needed.  Each person will likely present differently, which will require a variations on how you approach their rehabilitation.

But the real challenge when working with someone with shoulder impingement isn’t figuring out they have shoulder pain, that’s fairly obviously.  It’s figuring out why they have shoulder pain.

 

 

Shoulder Impingement: 3 Keys to Assessment and Treatment

To make the treatment process a little more simple, there are three things that I typically consider to classify and differentiate shoulder impingement.

  1. Location of impingement
  2. Structures involved
  3. Cause of impingement

Each of these can significantly vary the treatment approach and how successful you are helping each person.

 

Location of Impingement

The first thing to consider when evaluating someone with shoulder impingement is the location of impingement.  This is generally in reference to the side of the rotator cuff that the impingement is located, either the bursal side or articular side.

shoulder impingement assessment and treatment

See the photo of a shoulder MRI above.  The bursal side is the outside of the rotator cuff, shown with the red arrow.  This is probably your “standard” subacromial impingement that everyone refers to when simply stating “shoulder impingement.”  The green arrow shows the inside, or articular surface, of the rotator cuff.  Impingement on this side is termed “internal impingement.”

The two are different in terms of cause, evaluation, and treatment, so this first distinction is important.  More about these later when we get into the evaluation and treatment treatment.

 

Impinging Structures

To me, this is more for the bursal sided, or subacromial, impingement and refers to what structure the rotator cuff is impinging against.  As you can see in the pictures below (both side views), your subacromial space is pretty small without a lot if room for error.  In fact, there really isn’t a “space”, there are many structures running in this area including your rotator cuff and subacromial bursa.

Shoulder impingement

You actually “impinge” every time you move your arm.  Impingement itself is normal and happens in all of us, it is when it becomes excessive or abnormal that pathology occurs.

I try to differentiate between acromial and coracoacromial arch impingement, which can happen in combination or isolation.  There are fairly similar in regard to assessment and treatment, but I would make a couple of mild modifications for coracoacromial impingement, which we will discuss below.

 

Cause of Impingement

The next thing to look at is the actual reason why the person is experiencing shoulder impingement.  There are two main classifications of causes, that I refer to as “primary” or “secondary”shoulder  impingement.

Primary impingement means that the impingement is the main problem with the person.  A good example of this is someone that has impingement due to anatomical considerations, with a hooked tip of the acromion like this in the picture below.  Many acromions are flat or curved, but some have a hook or even a spur attached to the tip (drawn in red):

shoulder impingement

 

Secondary impingement means that something is causing impingement, perhaps their activities, posture, lack of dynamic stability, or muscle imbalances are causing the humeral head to shift in it’s center of rotation and cause impingement.  The most simply example of this is weakness of the rotator cuff.

The rotator cuff and larger muscle groups, like the deltoid, work together to move your arm in space.  The rotator cuff works to steer the ship by keeping the humeral head centered within the glenoid.  The deltoid and larger muscles power the ship and move the arm.

Both muscles groups need to work together.  If rotator cuff weakness is present, the cuff may lose it’s ability to keep the humeral head centered.  In this scenario, the deltoid will overpower the cuff and cause the humeral head to migrate superiorly, thus impinging the cuff between the humeral head and the acromion:

evaluation and treatment of shoulder impingement

 

Other common reasons for secondary impingement include mobility restrictions of the shoulder, scapula, and even thoracic spine.  We see this a lot at Champion.  In the person below, you can see that they do not have full overhead mobility, yet they are trying to overhead press and other activities in the gym, flaring up their shoulder.

shoulder impingement mobility

If all we did with this person was treat the location of the pain in his anterior shoulder, our success will be limited.  He’ll return to gym and start the process all over if we don’t restore this mobility restriction.

The funny thing about this is that people are almost never aware that they even have this limitation until you show them.

 

 

Differentiating Between the Types of Shoulder Impingement

In my online program on the Evidence Based Evaluation and Treatment of the Shoulder, I talk about different ways to assess shoulder impingement that may impact your rehab or training.  There are specific tests to assess each type of impingement we discussed above.

The two most popular tests for shoulder impingement are the Neer test and the Hawkins test.  In the Neer test (below left), the examiner stabilizes the scapula while passively elevating the shoulder, in effect jamming the humeral head into the acromion.  In the Hawkins test (below right) the examiner elevates the arm to 90 degrees of abduction and forces the shoulder into internal rotation, grinding the cuff under the subacromial arch.

Shoulder impingement tests

You can alter these tests slightly to see if they elicit different symptoms that would be more indicative to the coracoacromial arch type of subacromial impingement.  This would involve the cuff impingement more anteriorly so the tests below attempt to simulate this area of vulnerability.

The Hawkins test (below left) can be modified and performed in a more horizontally adducted position.  Another shoulder impingement test (below right) can be performed by asking the patient to grasp their opposite shoulder and to actively elevate the shoulder.

how to assess shoulder impingement

There is a good chance that many patients with subacromial impingement may be symptomatic with all of the above tests, but you may be able to detect the location of subacromial impingement (acromial versus coracoacromial arch) by watching for subtle changes in symptoms with the above four tests.

Internal impingement is a different beast.

This type of impingement, which is most commonly seen in overhead athletes, is typically the result of some hyperlaxity in the anterior direction.  As the athlete comes into full external rotation, such as the position of baseball pitch, tennis serve, etc., the humeral head slides anterior slightly causing the undersurface of the cuff to impingement on the inside against the posterior-superior glenoid rim and labrum.  This is what you hear of when baseball players have “partial thickness rotator cuff tears” the majority of time.

shoulder internal impingement

 

 

The test for this is simple and is exactly the same as an anterior apprehension test.  The examiner externally rotates the arm at 90 degrees abduction and watches for symptoms.  Unlike the shoulder instability patient, someone with internal impingement will not feel apprehension or anterior symptoms.  Rather, they will have a very specific point of tenderness in the posterosuperior aspect of the shoulder (below left).  Ween the examiner relocates the shoulder by giving a slight posterior glide of the humeral head, the posterosuperior pain diminishes (below right).

how to assess shoulder internal impingement

 

3 Keys to Treating Shoulder Impingement – How Does Treatment Vary?

There are three main keys from the above information that you can use to alter your treatment and training programs based on the type of impingement exhibited:

Subacromial Impingement Treatment

To properly treat, you should differentiate between acromial and coracoacromial impingement.  Treatment is essentially the same between these two types of subacromial impingement, however, with coracoacromial arch impingement, you need to be cautious with horizontal adduction movements and stretching.  This is unfortunate as the posterior soft tissue typically needs to be stretched in these patients, but you can not work through a pinch with impingement!

A “pinch” is impingement of an inflamed structure!

Also, I would avoid elevation in the sagittal plane or horizontal adduction exercises.

 

Primary Versus Secondary Shoulder Impingement

This is an important one and often a source of frustration in young clinicians.  If you are dealing with secondary impingement, you can treat the persons symptoms all you want, but they will come back if you do not address the route of the pathology!

I do treat their symptoms, that is why they have come to see me.  I want to reduce inflammation.  However, this should not be the primary focus if you want longer term success.

This is where a more global look at the patient, their posture, muscle imbalances, and movement dysfunction all come into play.  Break through and see patients in this light and you will see much better outcomes.

A good discussion of the activities that are causing their symptoms may also shed some light on why they are having shoulder pain.  Again, using the example above, if you don’t have full mobility and try to force the shoulder through this tightness you are going to likely cause some issues.  This is especially true if you add speed, loading, and repetition to elevation, such as during many exercises.

 

Internal Impingement

One thing to realize with internal impingement is that this is pretty much a secondary issue.  It is going to occur with any cuff weakness, fatigue, or loss of the ability to dynamically stabilize.   The athlete will show some hyperlaxity in this athletic “lay back” shoulder position.  Treat the cuff weakness and it’s ability to dynamically stabilize to relieve the impingement.  How to treat internal impingement is a huge topic that I cover in a webinar for my Inner Circle members.

 

Learn Exactly How I Evaluate and Treat the Shoulder

If you are interested in mastering your understanding of the shoulder, I have my acclaiming online program teaching you exactly how I evaluate and treat the shoulder at ShoulderSeminar.com!

The online program at takes you through an online 8-week program with new content added every week.  You can learn at your own pace in the comfort of your own home.  You’ll learn exactly how I approach:

  • shoulder seminarThe evaluation of the shoulder
  • Selecting exercises for the shoulder
  • Manual resistance and dynamic stabilization drills for the shoulder
  • Nonoperative and postoperative rehabilitation
  • Rotator cuff injuries
  • Shoulder instability
  • SLAP lesions
  • The stiff shoulder
  • Manual therapy for the shoulder

The program offers 21 CEU hours for the NATA and APTA of MA and 20 CEU hours through the NSCA.

Click below to learn more!

large-learn-more

 

How Rehab Differs Between Traumatic and Atraumatic Shoulder Instability

The latest Inner Circle webinar recording on How Rehab Differs Between Traumatic and Atraumatic Shoulder Instability is now available.

 

How Rehab Differs Between Traumatic and Atraumatic Shoulder Instability

How Rehab Differs Between Traumatic and Atraumatic Shoulder InstabilityThis month’s Inner Circle webinar is on How Rehab Differs Between Traumatic and Atraumatic Shoulder Instability.  In this presentation, I highlight the major differences in the evaluation and treatment process.

This webinar will cover:

  • The difference between traumatic and atraumatic shoulder instability
  • The import factors to consider that will change your rehab progression
  • Should you immobilize or not?
  • The primary focus for rehab for each type of instability

To access this webinar:

 

A Simple Approach to Running Analysis for Clinicians

This week’s post is an amazing article by my friend Chris Johnson on what he looks for during a running analysis.  Chris is my go-to resource for running related injuries and rehabilitation.  He’s also recently developed an app on the iTunes app store to help runners, which I have reviewed and found to be really impressive.  Check it out at the end of this article!

 

A Simple Approach to Running Analysis For Clinicians

a simple approach to running analysis for cliniciansThe ultimate special test for runners is RUNNING.

For some odd reason, when runners seek medical consultation, clinicians routinely neglect watching them run during the rehab process. While it may not always be appropriate to take an injured runner through a formal running analysis at the time of presentation, at some point it’s imperative to take the time to watch them run. Only then will you gain a more complete understanding of perhaps what landed them in your hands in the first place.

A great deal of research has emerged over the past several years specifically looking at various characteristics of the running gait and their associated implications. A few prime examples include but are not limited to the following:

  •      Footstrike
  •      Step rate
  •      Hip adduction
  •      Loading rates
  •      Speed

By taking the time to understand the running gait along with ways to shift loads in the lower extremity, clinicians will ultimately be in a better position to help runners return to consistent training in a timely manner through manipulating physical loads on the ecosystem.

While this may seem daunting to those new at running analysis, it can actually be quite simple.  The purpose of this post is to provide clinicians with a simple framework to approach conducting a running analysis using what I call “The Four S’s of Running Analysis.”  These are:

  •      Sound
  •      Strike
  •      Step rate
  •      Speed

While it’s important to appreciate that overground and treadmill running are different animals, approaching every running assessment in a systematic manner is important. Clinicians are encouraged to use the resources at their disposal while understanding their relevance and limitations. By developing proficiency in performing a running gait analysis, clinicians will ultimately refine their clinical decision making and improve their outcomes in terms of restoring one’s float phase.

 

Sound

Before you even watch someone run, close your eyes and listen to the sound of their running gait. As clinicians, there is a great deal of information that can be ascertained by simply listening to one run.

  •      Does the runner land quiet, or is does it sound like they are going to put a hole through the ground or treadmill belt?
  •      Do their feet sound similar or is there a strike asymmetry?
  •      Does the sound of their footstrike change as a function of being shod versus unshod?
  •      Does the sound change as a function of different shoe types?

One of the simplest cues to consider in the event that someone is “overstriking” is to simply instruct the runner to “quiet your feet down.” This may be particularly relevant if the goal is to reduce the vertical ground reaction force (vGRF).

It’s important to appreciate that when one does go to quiet down their feet, that they tend to increase the ankle and knee joint excursions. On the other hand, if landing sound increases, so does the vGRF secondary to decreasing ankle joint excursion while increasing the hip joint excursion (Wernli et al. 2016).

It has been the author’s experience that under a shod condition that a rearfoot strike lends itself to reducing the sound of impact whereas when a runner is barefoot that a forefoot strike serves to quiet down the sound of impact through using the triceps surae to dampen the vertical rate of loading (VRL).

 

Strike

Let’s not complicate things! Does the runner land with a noticeable heel strike or forefoot strike, or do they exhibit a midfoot, or “flat-footed” contact? Is their strike symmetrical?

Also, the point in the race or training session we are discussing matters because one’s strike pattern tends to change over the course of the run, especially during competition (Larson et al 2011).

Over the past several years, there was a considerable buzz around forefoot striking as a means to address common running related injuries. This was due in large part to the book “Born to Run,” in conjunction with Daniel Lieberman’s classic manuscript that appeared in Nature (Lieberman et al 2010) coupled with a craze by the mass media.  It should be mentioned that coaches have long used barefoot training as means to incorporate variability into a runner’s program.

Training runners to incorporate a forefoot strike into their training may prove effective some, such as those with tibial stress syndromes, anterior compartment syndrome, and anterior knee pain.  Caution should be exercised in the context of a past medical history remarkable for injuries involving the calf muscle complex, plantar tissues of the foot, and/or metatarsals as it will bias the load to these regions.

On the other hand, if a runner is dealing with an Achilles tendinopathy or recovering from a calf muscle strain, a heel or rearfoot striking strategy would perhaps be indicated as research has shown that such a strategy reduces Achilles tendon force, strain, and strain rate relative to a FFS pattern (Lyght et al. 2016).

In my opinion, one strike pattern is not necessarily superior to others, but rather, that every strike pattern has unique characteristics and implications (Almeida et al 2015) and serves a purpose pending the context and intent.

By taking the time to understand the implications of each strike pattern, clinicians will be better able to understand the potential changes to consider making as a means to shift load to different regions of the lower extremity. As with any change, however, clinicians must be mindful that it should take place in a slow and gradual manner.

Finally, never take a runner’s word if they tell you that they utilize a certain strike pattern as research has shown that a runner’s subjective report of their strike is not necessarily accurate (Bade et al. 2016).

 

Step Rate

Running is largely about rhythm and timing.

It’s therefore no surprise that over the past several years, a considerable amount of research has focused on step rate or what’s more commonly known as cadence as a simple and practical means to address common running injuries.

The idea is that by increasing the number of steps while keeping running velocity constant, a runner can effectively reduce the magnitude of each individual loading cycle despite increasing the total number of loading cycles for a given training session. This ultimately occurs through a reduction in one’s stride length as when step rate and stride length are manipulated independently, the benefits only occur with a reduction in stride length.

runcadence appBecause I think this is so important, I actually developed a cadence app, RunCadence, which is specifically designed to help runners and clinicians apply cadence to rehab and training for runners through the use of accelerometry coupled with a metronome.

Research has shown that increasing one’s step rate by as a little as five percent above preferred while keeping velocity constant can reduce shock absorption at the level of the knee by upwards of 20 percent. Additionally, increasing step rate by 10 percent above preferred significantly reduces peak hip adduction angle as well as peak hip adduction and internal rotation moments (Heiderscheit et al. 2011).

More recently, a study showed that irrespective of whether one utilizes a rearfoot or forefoot strike pattern that increasing one’s cadence by five percent results in lower peak Achilles stress and strain.

Decreasing one’s stride length through step rate manipulation has also been shown to lead to a wider step width with an accompanying decrease in contralateral pelvic drop (CPD), peak hip adduction, peak ankle eversion, as well as peak ITB strain and strain rate (Boyer & Derrick 2015).

Lastly, clinicians should also bear in mind that increasing one’s step rate greater than 10% above preferred while keeping running velocity constant tends to occur at a greater metabolic cost so as they say, “the juice ain’t worth the squeeze.” So at day’s end, remember that the sweet spot is between 5-10% when it comes to increasing cadence based on the current body of literature.

 

Speed

Anytime one discusses running, it’s important that we account for the amount of ground covered in a given time. This is referred to as running velocity, which is the quotient of distance and time.

The typical units that we go by in the United States are min/mile or miles/hour (mph), though most of the world relies on the metric system (m/s or km/hr). So make sure you have a converter bookmarked on your web browser.

Running is typically classified into one of five categories based on speed (Novachek 1998):

  1. Jogging = 2m/s or 4.5mph
  2. Slow running = 3.5m/s or 7.8mph
  3. Medium running = 5m/s or 11mph
  4. Fast running = 7m/s or 15mph
  5. Sprinting = 8m/s or 17.9mph

Additionally, to run faster, a runner must push on the ground more forcefully, more frequently, or a combination thereof (Schache et al 2014).

At speeds < 7m/s the ankle plantarflexors reign supreme as they contribute most significantly to vertical support surfaces and increases in stride length (Dorn et al 2012). At faster speeds, however, the energy sources tend to shift proximal as a means to increase stride frequency in order to increase speed.

The reality is that most runners seeking our services will fall under the category of joggers and slow runners unless one works with speed based running athletes and short course racers.

Once a runner has reached a point in their rehab where they are a candidate to undergo a running analysis, the question naturally becomes, “what speed should we select?” This question is best answered by primarily considering the runner’s pre-injury status along with the severity, region, type of injury, and agreed upon goals.

It’s also essential to clearly identify the runner’s typical training and race intensities to better understand the entry point to having them run as well as the various speeds worth taking them through as part of the analysis.

It should also be mentioned that a thorough running analysis may require a couple sessions to work them up to faster velocities to ensure tolerance to progressive loading. Unfortunately, a common pitfall in the clinic is reluctance, or failure to have runners work up to faster speeds. This invariably leads to a myopic view of one’s running while engendering the potential for hasty clinical reasoning as we transition runners back to training.

In retrospect, running is an activity that has relatively predictable performance demands. By taking the time to develop proficiency in conducting a simple running analysis while applying the research as it relates to shifting loads in the lower extremity, clinicians will be better positioned to help runners return to consistent and healthy training and beyond.

 

Download the RunCadence App

running_cadence_appRunCadence was developed by two physical therapists to help the running community apply step rate to running via real time step rate notification and metronome.
Start using RunCadence to get more in tune with your running. While no shortcuts or “hacks” to running exist, gait retraining using cadence is the next best thing.  Click below to download:

 

 

About the Author
chris_johnson_headshot

Chris Johnson, PT, is the owner of Zeren PT and Performance in Seattle, WA.  In addition to being a highly skilled physical therapist and performance enhancement specialist for runners, Chris is also certified triathlon coach (ITCA), three-time All-American triathlete, two-time Kona Qualifier, and is currently ranked 16th (AG) in the country for long course racing.

Integrating Breathing Drills

The latest Inner Circle webinar recording on Integrating Breathing Drills is now available.

 

Integrating Breathing Drills

integrating breathing drillsThis month’s Inner Circle webinar is on Integrating Breathing Drills.  In this presentation, I review a couple of quick techniques I use to determine what type of breathing drills to incorporate into my programming.  I’ll overview several different breathing techniques and progressions that you can start implementing.

This webinar will cover:

  • How to assess for proper breathing patterns
  • How to choose which breathing techniques to perform
  • How to progress breathing exercises

To access this webinar:

The One Thing You Must Do When Evaluating for an ACL Injury

Anterior cruciate ligament (ACL) injuries are common. When evaluating the ACL, special tests like a Lachman Test or Anterior Drawer have been shown to have great reliability and validity.

However, there is one main reason why you may get a false positive for an ACL injury of the knee that is often overlooked – you actually injured your posterior cruciate ligament (PCL)!

I know, it seems backwards, but watch this quick video for my explanation!

 

Learn Exactly How I Evaluate and Treat the Knee

Want to learn even more about how I evaluate and treat the knee? My online program on the Recent Advances in the Evidence-Based Evaluation and Treatment of the Knee is now available. I’ll show you everything you need to master the knee.  Click the button below for more information and to sign up now!

large-learn-more

3 Tips for Assessing the Patellofemoral Joint

The latest Inner Circle recording on 3 Tips for Assessing the Patellofemoral Joint is now available.

3 Tips for Assessing the Patellofemoral Joint

3 Tips for Assessing the Patellofemoral Joint

This month’s Inner Circle presentation is on 3 Tips for Assessing the Patellofemoral Joint.  In this live inservice recording, I discuss a few tips that that I follow when evaluating someone with anterior knee pain, or patellofemoral pain syndrome.  Often times the patellofemoral joint gets little attention during the examination.  But, in order to treat patellofemoral pain successfully, you need to have an accurate diagnosis that is very specific.  Not all anterior knee pain is the same!

This presentation will cover:

  • How your anatomy of your trochlea can alter your ability to statically stabilize
  • How to assess the static stabilizers of the patella
  • A detailed overview of how I palpate different soft tissue structures around the knee
  • How and why you need to look both proximally and distally as well as at the knee
  • The one simple test I do with everyone to assess how proximal and distal factors xalter the forces at the knee

To access this webinar:

Assessing the Shoulder Shrug Sign

The latest Inner Circle webinar recording on Assessing the Shoulder Shrug Sign is now available.

Assessing the Shoulder Shrug Sign

Assessing_the_Shoulder_Shrug_SignIn this inservice recording, I overview the two main types of shoulder shrug signs that I see.  The classic shrug sign typically involves either a rotator cuff injury or significant capsular hypomobility.  However, we also see shrugs in people that have poor overhead mobility.

This webinar will cover:

  • What are the different types of shoulder shrug signs?
  • How to tell if you have a mobility or motor control issue
  • The sequence I follow to determine what to choose for my treatments

To access this webinar:

Pin It on Pinterest

5 Things You Need to Understand to Master Functional Rehab and Performance

Join Mike's Newsletter and gain FREE access to his webinar overviewing his system of integrated functional rehab and performance training, PLUS these bonuses:

1. My 1+ Hour Functional Rehab and Performance Webinar

2. My 36-Page Solving the Patellofemoral Mystery eBook

3. My Accelerated ACL Rehabilitation Protocol

Thanks! Check your email for more information and your FREE bonuses!