Posts

Training Rotational Power in Athletes

Training Rotational Power in AthletesSeveral weeks ago I was in San Francisco and stopped by TRX to see my friends Brian Bettendorf and Pete Holman.  We had a great time sharing thoughts and exercise techniques.

 

TRX Rip Trainer

Pete Holman is the Director of Rip Training at TRX and original creator of the Rip Trainer.   Many are familiar with the TRX Suspension System but TRX also has the newer Rip Trainer device that I have been using a ton.  I’ve shown some exercises that I have incorporated into my programs using the TRX Rip Trainer during presentations, but Pete really takes it to the next level.  His enthusiasm is contagious and his ability to educate is fantastic.  I asked Pete if we could “bottle” some of his thoughts to include as webinars over at RehabWebinars.com.

Pete came through in a big way and sent me three fantastic webinars that were posted over at RehabWebinars.com last week:

  • Training Rotational Power in Athletes
  • The Pitchfork Exercise for the Posterior Chain
  • Shoulder Prehab Exercises for Athletes

The webinars came out so great that I couldn’t resist sharing one of them here with my readers.  Below is Pete’s webinar on Training Rotational Power in Athletes.  Pete discusses the biomechanics and anatomical considerations of transverse plane training, demonstrating several techniques using the TRX Rip Trainer.

I love using the Rip Trainer because it really helps incorporate multiple planes of motion into our exercise techniques.  This 3D muscle training is something I have been preaching in my Inner Circle webinars lately.  As basic as a device this seems, you absolutely need to use it to see the many benefits.  I know just from hanging out with Pete for a day, I have learned many new uses and will continue to learn more.  There are a ton of rehab, fitness, and performance uses.

 

Training Rotation Power in Athletes

These are just a small handful of exercises you can use the TRX Rip Trainer for when designing rotational power programs.  I’ll try to keep trying to share what exercises I come up with, but I want to hear what you think.  Have you used the TRX Rip Trainer and if so what do you like to perform with the device?  If you haven’t checked them out yet, pick up a TRX Rip Trainer.

TRX Rip Trainer

[hr]

 

The Importance of Hip Flexion Strength

Today’s post is a guest article written by Chris Johnson on the the importance of hip flexion strength when dealing with lower extremity pathology.

 

The Importance of Seated Hip Flexion Strength

Just over eight years ago, I accepted my first job as a physical therapist at the Nicholas Institute of Sports Medicine and Athletic Trauma (NISMAT) of Lenox Hill Hospital. This experience afforded me the opportunity to train under the late Dr. James A Nicholas, one of the “Founding Fathers” of sports medicine, and the winner of the 2004 President’s Cup award from the Sports Section of the American Physical Therapy Association (APTA). One of the greatest lessons I learned from Dr. Nicholas pertained to “linkage” and the importance of assessing seated hip flexion strength in patients presenting with lower extremity pathology, especially patellofemoral pain syndrome (PFPS).

In 1976, Dr. Nicholas and colleagues published an article in The American Journal of Sports Medicine entitled, “A study of thigh muscle weakness in different pathological states of the lower extremity.” This study documented that subjects with patellofemoral problems exhibited significant hip flexor weakness on the involved side when compared to a group of controls. Furthermore, Dr. Nicholas and his co-authors concluded that the hip flexor resistance test affords a quick and accurate way of detecting unilateral weakness of the trunk, thigh flexors, and quadriceps group making it a valuable clinical assessment tool.

More recently (2006), Tim Tyler and colleagues did a study investigating the role of hip muscle function in the treatment of PFPS. This study corroborated Dr. Nicholas’s original findings and demonstrated the importance of addressing hip flexor strength in the context of PFPS. The authors proposed that improving hip flexor strength helps to establish a stable pelvis during gait thus preventing it from going into excessive anterior tilt, which would result in excessive femoral internal rotation. The iliopsoas is also a secondary femoral external rotator and strengthening this muscle helps to align the trochlear groove and patella. It should also be mentioned that this study documented the importance of establishing adequate flexibility of the hip flexors and iliotibial band (ITB), which would induce posterior pelvic tilt and relative femoral external rotation. One of the major takeaways from this article is that in addition to resolving any hip flexor tightness, it is also important to ensure adequate strength of this muscle group.

 

Assessing Hip Flexion Strength

While clinicians and fitness professionals routinely assess for and correct hip flexor tightness, it has been my experience that screening for hip flexor weakness in a seated position is not routinely performed. Considering the research, medical and allied health professionals should include this as part of their screening or examination process, especially in the context of lower extremity pathology such as PFPS. To perform this test, the patient should be seated at the edge of a table or plinth with their back straight and legs dangling over the edge of the table while holding on to the front of the table. The patient is then instructed to flex one hip by bringing the knee up towards the chest and to hold it in place while the examiner pushes down on the thigh with the palm of his or her hand. Comparison is then made to the contralateral side. It is the author’s opinions that break testing is the best approach to strength test the hip flexors given the limited range available in a seated position. Standard manual muscle testing grades can be applied or clinicians can use a handheld dynamometer/manual muscle tester to establish a more specific strength index.

When assessing seated hip flexion strength, there are several key to ensure the test is properly performed. First off, patients should have 120 degrees of clean hip flexion so that they can get the involved extremity in to the proper test position without any compensatory motion. Secondly, patients should hold on the front of the plinth to prevent leaning back, which is a common substitution or trick movement when testing hip flexor strength. This will allow the examiner to isolate the hip flexor muscle group as well, thereby ensuring accurate results. Lastly, pay close attention to the low back during testing as patients presenting with hip flexor weakness often fall into excessive anterior pelvic tilt secondary to poor spinal stability, which can result in shearing of the lumbar segments. This may also indicate the need to incorporate spinal stabilization exercises in to the overall treatment program.  Here is a quick video demonstration:

YouTube Preview Image

 

Next time you find yourself evaluating or treating a patient suffering from a lower extremity injury, make sure to test their seated hip flexion strength, especially in the context of PFPS.  And remember that it is not only important for the hip flexors to be extensible but also for them to be STRONG, and without assign hip flexion strength you’ll never know!

 

References:

  1. Nicholas JA, Strizak AM, Veras G. A study of thigh muscle weakness in different pathological states of the lower extremity. Am J Sports Med. 1976 Nov-Dec:4: 241-8.
  2. Tyler TF, Nicholas SJ, Mullaney MJ, McHugh MP. The role of hip muscle function in the treatment of patellofemoral pain syndrome. Am J Sports Med. 2006 Apr; 34(4): 630-6.

 

About the Author

Chris Johnson, MPT, MCMT, ITCA is a physical therapist and competititive triathlete.  He has a private physical therapy practice in Manhattan.  Youcan learn more from Chris at his website ChrisJohnsonPT.com and Twitter.

Chris has a great website that has a lot of information, especially in regard to running and triathlons.  Thanks for such a great article on the importance of hip flexion strength!

 

 

 

Thoracolumbar Fascia – An Area Rich with Activity

Today’s guest post is about the thoracolumbar fascia from Patrick Ward.  I have been reading Patrick’s website for a while now and have always been impressed his content, but he also has the ability to write and communicate in a fashion that fosters thought and learning.  I have been talking with him for months about sending me a guest post, so I am happy to finally have one, thanks Patrick!

Thoracolumbar fascia: An area rich with activity 

The thoracolumbar fascia can be thought of as a transitional area between the lower extremity and the upper extremity where forces are transferred in athletic and sporting movement.  For this reason, the thoracolumbar fascia plays an integral role in the movement system of the body as it connects many joint systems – hips, pelvis, lumbar spine, and thoracic spine.   Also, considering that the latissimus dorsi has attachments onto the thoracolumbar fascia and inserts onto the lesser tubercle of the humerus, the glenohumeral joint can also be thought of as ‘connected’ with the thoracolumbar fascia.  Additionally, the cervical fascia and the thoracolumbar fascia are continuous, so this fascial structures effect can be seen into the cervical and potentially even the cranial regions.

For this reason, the thoracolumbar fascia can be an important area for treatment both in instances of injury/pathology or when developing a recovery/regeneration treatment protocol for certain athletes.

 

Three layers of Thoracolumbar Fascia

Thoracolumbar FasciaThe thoracolumbar fascia can be thought of as having three layers which help to separate the muscles in this region into compartments:

  • Anterior layer – Attaching to the anterior aspect of the lumbar transverse processes and the anterior surface of the quadratus lumborum.
  • Middle layer – Attaching to the medial tip of the transverse processes and giving rise to the transverse abdominus
  • Posterior layer – Covering all of the muscles from the lumbosacral region through the thoracic region as far up as the splenii attachments.  Additionally, this posterior layer attaches to both the erector spinae and gluteus maximus aponeurosis.  It is in this posterior layer that the gluteus maximus and contralateral latissimus dorsi attach with each other and coordinate together to allow for pendulum like movements between the upper and lower extremity that make walking and running possible.

 

Together, the muscles that connect into the three layers of the thoracolumbar fascia help to provide both a stabilizing and biomechanical role for the body.  Additionally, the vast amount of mechanoreceptors in this region hint to the importance of the thoracolumbar fascia’s sensory role, making it a potentially rich target for hands on therapy.

Photo from Wikipedia

 

A Stabilizing Role 

The transverse abdominus, internal oblique, and quadratus lumborum all invest themselves into portions of the thoracolumbar fascia.  According to Neumann (2010), the transverse abdominus provides anticipatory/feed-forward stabilization of the lumbo-pelvic region via a tensioning of the thoracolumbar fascia and an increase in intrabdominal pressure.  The connection that the thoracolumbar fascia has with the posterior ligaments of the lumbar spine allows it to assist in supporting the vertebral column when it is flexed by developing fascial tension that helps control the abdominal wall (Gracovetsky, 1981) and it may also provide some sensory function to the body aid in both postural and protective reflex activity (Yahia, et al., 1992).

The biomechanical role of the thoracolumbar fascia is generally understood by individuals in the strength and conditioning and rehabilitation professions.  Exercise programs or “core training” programs are typically designed to elicit some sort of stabilization activity to the muscles in this region.  However, insight into the myofibroblasts and mechanoreceptors of the thoracolumbar fascia may require us to look a bit deeper if we wish to make larger changes to the function of the human body.

 

Myofibroblasts

Myofibroblasts are cells that have a sort of dual function, being part fibroblast and part smooth muscle.  It is because of these smooth muscle properties that the myofibroblasts can contract on their own – like other smooth muscles cells – placing them under the control of the autonomic nervous system and allowing the autonomic nervous system to potentially regulate fascial pre-tension independently of muscular tone.  Thus, the fascial system is an adapting organ which almost has a “life of its own.” 

Schleip and colleagues (2006) showed that the lumbar fascia, via its myofibroblasts, has the ability to contract in situations of either chronic tissue contractures, such as tissue remodeling, or during more smooth muscle-like contractions, which may help to influence low-back stability.  Furthermore, Yahia et al. (1993) showed that the thoracolumbar fascia had the ability to spontaneously contract when the tissue was stretched and held at a constant length repeatedly, causing the fascia to slowly begin to increase resistance.  This information could be potentially beneficial in understanding pathologies where increased myofascial stiffness is present.  However, influencing the system to make a change in this stiffness is a more difficult question.

 

Does it Come Back to Breathing?

Given the smooth muscle properties and the control that the autonomic nervous system may have over the fascial network, perhaps a potential window into effectively dealing with increased myofascial tone can circle around to breathing.

Respiratory function is on aspect of the autonomic nervous system that we actually have direct control over.  We can change our breathing and help to elicit a parasympathetic response to allow for greater relaxation and potentially less overall tissue tone/tension, hopefully leading to more of a comfortable state of being a decreased threat perception.  Additionally, the role of the diaphragm in stabilizing the lumbar region cannot be overlooked and the fact that it shares a fascial connection with the quadratus lumborum (as well as the psoas major) and the transverse abdominus fibers invest themselves into part of the diaphragm means that the diaphragm is in a potentially prime position to have an influence over the thoracolumbar fascia, since both of these muscles invest into layers of that fascial structure.

 

Manual Therapy of the Thoracolumbar Fascia

The thoracolumbar fascia is richly innervated with mechanoreceptors providing it with a strong sensory role and making it a target for manual therapy.

There are many ways to address the body with manual/touch therapy.  The idea of treating “fascia” has been a hot topic as of late and oftentimes therapists are doing similar things however explaining them in different ways, leading to large semantics debates.  With regard to treating fascia I believe that it is important to not leave out the nervous system, as the goal of any manual hands on treatment is to somehow effect the brain to create an environment that is ripe for healing – one which decreases overall threat perception, decreases fear avoidance, and opens a window for the individual to perform some sort of non-painful movement that increases confidence, and create relaxation (again, helping to achieve a parasympathetic response).

Several types of receptors have been found in connective tissue (not just the thoracolumbar fascia) such as pacini and paciniform corpuscles, ruffini organs, interstitial receptors, and golgi receptors.  Different receptors are responsive to different sorts of techniques and forms of therapy.  For example, pacini receptors are responsive to pressure changes and vibrations, while ruffini receptors are responsive to sustained pressure and tangential forces such as a lateral stretch.

 

Practical Applications

The thoracolumbar fascia plays an important role in human movement as it not only serves as an attachment site for numerous muscles in the lumbar, thoracic, and sacral regions, but also is an important area of transition between the upper and lower extremities where forces are transferred to allow for coordinated function.

Understanding the implications that the thoracolumbar fascia has over the body will help therapists to develop both exercise programs and manual therapy/hands on treatment programs for either rehabilitation or recovery (to help increase relaxation in this area between competitions and prevent overuse or excessive strain which is common in sport).

The smooth muscle properties of the thoracolumbar fascia (and all fascia of the body) indicate a potential role of the autonomic nervous system in regulating fascial tone.  For this reason, understanding the individual athlete and levels of stress as well as their individual stress resistance can be helpful in managing overall fascial tension.  The pH of the body plays an important role in fascial tension, as greater levels of alkalinity create vasoconstriction and increased muscle tone.  The pH of the body can be influenced by increased levels of threat and changes in breathing, which cause alterations in expired CO2.  Thus, breathing, relaxation, and/or meditation, may be potential ways in which the fascial system can be influenced in a training or therapy session.  Managing stress using a variety of recovery modalities in between competitions can be help to keep athletes healthy and performing well.

Finally, the high number of mechanoreceptors found in the thoracolumbar fascia (and in all fascia) indicate that the fascial system provides an important sensory role for the body.  Various manual/hands on therapies can be utilized to influence the sensory system (and the brain) to help decrease tone/tension, improve proprioception and awareness to the area being treated, decrease threat perception, increase relaxation, and provide a window into the parasympathetic nervous system which can potentially create an optimal environment for healing.

Taking all of this into consideration, when assessing an athlete it is important to look at the entire body and keep in mind that the thoracolumbar fascia shares a connection with many structures and its influence can be seen as far up as the cervical region and into the extremities.  With that in mind the thoracolumbar fascia may be a potential area for therapy when attempting to influence other parts of the body.

 

About the Author

Patrick WardPatrick Ward, MS, CSCS, LMT is a certified strength and conditioning specialist and licensed massage therapist.  He owns Optimum Sports Performance (www.optimumsportsperformance.com), a sports conditioning and soft tissue therapy company which provides training, treatment, and consulting to professional, amateur, and high school athletes.  He writes excellent articles on his website OptimumSportsPerformance.com.

 

References

  • Chaitow L, Delany J. Clinical Application of Neuromuscular Techniques – Volume 2: The Lower Body. Churchill Livingstone. Philadelphia, PA. 2002.
  • Benjamin M.  The fascia of the limbs and back – a review. Journal of Anatomy 2009; 214: 1-18.
  • Neumann D. Kinesiology of the hip: A focus on muscular actions. J Ortho Spors Phys Thera 2010; 40(2): 82-94.
  • Schleip R, Klinger W, Lehmann-Horn F. Fascia is able to contract in a smooth muscle-like manner and therby influence musculoskeletal mechanics. Proceedings of the 5th World Congress of Biomechanics, Munich, Germany. 2006. 51-54.
  • Hammer WI. Functional Soft-Tissue Examination and Treatment by Manual Methods. Jones and Bartlett Publishers. Sudbury, MA.  2007.
  • Schleip R. Fascial Plasticity: A new neurobiological explanation part 1. Journal of Bodywork and Movement Therapies 2003; 7(1): 11-19.
  • Schleip R. Fascial Plasticity: A new neurobiological explanation part 2. Journal of Bodywork and Movement Therapies 2003; 7(2): 104-116.
  • Yahia L, et al. Sensory  innervation of human thoracolumbar fascia: An immunohistochemical study. Acta Orthop Scand 1992; 63(2): 195-197.
  • Hoheisel U, et al. Nociceptive input from the rat thoracolumbar fascia to lumbar dorsal horn neurones. Euro J Pain 2011; 15: 810-815.

Does Hip Range Of Motion Correlate to Low Back Pain? Maybe Not in Everyone

hip range of motion back painThe correlation between hip range of motion and low back pain is commonly discussed, though most people tend to agree that limitations or asymmetries in hip motion is a contributing factor to low back pain.  You can read a summary of some research on the correlation between low back pain and hip range of motion in a previous post of mine.  But while there are several studies that show this to be true, there are also some studies that show no correlation at all.  To me, this isn’t very surprising as you really need to assure adequate control of study methodology when designing a research project like this. Grouping several different body types, activity levels, and handiness (righties and lefties) as well as poorly defining “low back pain” can surely throw a wrench in your project and possible allow some false assumptions.

 

Does a Small Loss of Hip Motion Matter to Everyone?

Biomechanically, a loss of hip motion contributing to low back pain makes perfect sense.  Any lack of mobility of the hips needs to be compensated for elsewhere, and unfortunately this will likely occur in the lumbar spine.  The knee is pretty stable, I can see the foot and ankle also contributing, but realistically moving at the lumbar spine is probably going to achieve the person’s goal of rotating the pelvic region the easiest.  This is unfortunate as we would all rather rotate from our hips and thoracic spines rather than lumbar spines.

hip range of motion contribute to low back painWhen looking closely at the research studies that show correlations between lose of hip motion and low back pain, subjects with low back pain had ~5 degrees less motion of their hips.  That is a decent amount of loss of motion, but I’m not sure 5 degrees is limiting for all people.   What if the person you are working with doesn’t need to use their body in the end range of rotation very often?  I bet that the majority of sedentary people don’t really need full hip range of motion to perform their everyday activities.  Walking, for example, only requires approximately 15 degrees in hip and pelvic rotation, no where near full motion.  Yes, a large deviation in hip range of motion will likely be a problem in everyone, but would a small amount of loss of hip rotation impact everyone’s chances of suffering from low back pain?  Maybe not.

 

Hip Range of Motion and Low Back Pain in Rotational Athletes

hip range of motion correlate to low back painRecent studies have assess the correlation between hip range of motion and low back pain in rotational sport athletes, sports like tennis, racquetball, and golf.  To me, this is a much better study design using a specific population of people that need to function at their end range of spine, pelvic, and hip rotation.  One particular study that I thought did a great job with research design, methodology, and subject selection was by Van Dillen in a 2008 issue of Physical Therapy in Sport.

The authors examined 48 subjects that participated in rotational sports.  When comparing those with a history of low back pain to those without, subjects with low back pain exhibited significantly less motion of their hips and significantly more asymmetry between their two hips.  The rotation of their left hips were more limited than their right hips, though only 1 subject in the group was left handed, so I’m not sure if this finding is significant to me or not.

So far, studies looking at rotational athletes have all shown a positive correlation between hip range of motion and low back pain while other studies with less specific patient populations have showed less consistent findings.  So does this mean that tight hips correlate to low back pain?  In rotational athlete it looks like the answer is yes, but in sedentary people, maybe not.

Photo by StuSeeger

Assess All Factors

Regardless, I agree with the thought process of “why not” work on everyone’s tight hips anyway, but just food for thought when working with your next person with low back pain.  Resist the urge to go with what is trendy now and bark up the wrong tree.  Don’t just assume that because they have 5 degrees less hip IR on one side that this is the main contributing factor in their back pain.  Thoroughly assess each person before assuming that their loss of hip range of motion contributes to low back pain.